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Key Concepts

Pattern, Category/Class, Instance, Generalization, Classification

Feature space, Objective function, Regularization, Loss Function, Optimization
Classification

Concepts

Support Vector Machines



Where is the bottle ?



4

  Where is Waldo ?



Task: find the most similar patch in a second image

Find the same patch



?



?



Computers are good with patterns 
and 

We are good with categories

Pattern vs Category

… but computers are also  
getting better with categories



Pattern                        Category

Patterns have  
discriminative representations  

with less variation

Categories also have  
discriminative representations,  

but with great variations

Oliva & Torralba (2007) TICS



Find a bottle:CategoriesInstances Find these two objects

Instance vs Category



Generalization: Extracting the essence of a concept based 
on its analysis of similarities from many discrete objects.

http://en.wikipedia.org/wiki/Generalization

Generalization

instances

category



Challenges of Generalization

A successful object category detector should be invariant to 
changes in illumination, occlusion, background clutter, scale, 

viewpoint, deformation and intra-class variance.



Object Instance Detection

Find the  
Object

illumination, occlusion, background clutter, scale, viewpoint, 
deformation and intra-class variance.

Which of the invariances below apply  
for the given object instance detection problem? 



Classification      vs.      Detection

Where is the …?  
Localize the object.Is this a … image ?

TableKitchen Horse
Waldo Car

Detection can be performed through a classifier, 
i.e. sliding window search  



Every training sample is represented  
as a point in the feature space

Feature Space

green

red
+

blue



SIFT: Scale-Invariant Feature Transform  

(Lowe, 1999)

HOG: Histograms of oriented gradients
(Dalal & Triggs CVPR 05)

Gist: Grid of gabors  

(Oliva & Torralba, 2001)

Example Feature Spaces



Machine Learning Methods



Generative      vs      Discriminative

• Represent both the data and the 
labels

• Often, makes use of conditional 
independence and priors

• Examples
• Naïve Bayes classifier
• Bayesian network

• Models of data may apply to 
future prediction problems

• Learn to directly predict the labels 
from the data

• Often, assume a simple boundary 
(e.g., linear)

• Examples
• Logistic regression
• SVM
• Boosted decision trees

• Often easier to predict a label 
from the data than to model the 
data



Discriminative Models

Source: Vittorio Ferrari, Kristen Grauman, Antonio Torralba, Fei-Fei Li



• Apply a prediction function to a feature representation of the 
image to get the desired output: 

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”

Slide credit: L. Lazebnik

Classification



y = f(x)

 

• Training: given a training set of labeled examples {(x1,y1), …, (xN,yN)}, 
estimate the prediction function f by minimizing the prediction error on 
the training set

• Testing: apply f to a never before seen test example x and output the 
predicted value y = f(x)

output prediction function image feature

Slide credit: L. Lazebnik

Classification Formulation



Prediction

Training

Image 
Features

Testing

Test Image

Learned 
model

Slide credit: D. Hoiem and L. Lazebnik

Training 
LabelsTraining 

Images

TrainingImage 
Features

Learned 
model

Learning Framework



f(x) = label of the training example nearest to x in the feature space 

• All we need is a distance function for our inputs 
• No training required!

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2

Slide credit: L. Lazebnik

Nearest neighbor classification



K-Nearest neighbor classification

Test 
example



3-Nearest neighbor classification

Test 
example



5-Nearest neighbor classification

Test 
example

Simple, a good one to try first



Binary classification can be viewed as the task of 
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

Linear Classifiers: Perceptron



Linear Classifiers

A B C

Which one is a better classifier?

f(xi) = sign(              )



Which one is a better classifier?

Linear Classifiers
f(xi) = sign(              )



Support Vector Machines (Intuition)



■ The linear discriminant 
function (classifier) with the 
maximum margin is the best

■ Margin is defined as the width 
that the boundary could be 
increased by before hitting a 
data point

■ Why it is the best? 
• Robust to outliners and thus 

strong generalization ability 

“safe zone”
Margin

x1

x2

denotes +1 

denotes -1

Support Vector Machines

Slide Credit: Jinwei Gu



■ Given a set of data points:

■ With a scale transformation on 
both w and b, the above is 
equivalent to 

For 1,   0

For 1,   0
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“safe zone”
Margin

x1

x2

denotes +1 

denotes -1
{( , )},  1, 2, ,i iy i n=x !…

Support Vector Machines

Slide Credit: Jinwei Gu



 

Loss Function (Hinge Loss)Regularizer

 

Support Vector Machines



 

Loss Function (Hinge Loss)Regularizer

Support Vector Machines

Objective Function 

y = sign(              )
Prediction Function Learning: Convex Optimization

gradient

objective 
(energy)



• Datasets that are linearly separable work out great:

0 x

Slide credit: Andrew Moore

Non-Linear SVMs

0 x

• But what if the dataset is just too hard? 

0 x

x2

• We can map it to a higher-dimensional space:



Φ:  x → φ(x)

• General idea: the original input space can always be 
mapped to some higher-dimensional feature space where 
the training set is separable:

Slide credit: Andrew Moore

Non-Linear SVMs



• Consider the mapping ),()( 2xxx =ϕ
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Non-Linear Kernel: Example



• The kernel trick: instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such that 
 
         K(xi , xj) = φ(xi ) · φ(xj) 

• This gives a nonlinear decision boundary in the original 
feature space:

bKyby
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

Non-Linear SVMs

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


❑ Linear kernel:

2
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❑ Polynomial kernel:

❑ Gaussian (Radial-Basis Function (RBF) ) kernel:

❑ Sigmoid:

■ In general, functions that satisfy Mercer’s condition can be kernel 
functions.

Common Kernel Functions



1. Pick an image representation (HoG, SIFT+BOW, etc.)
2. Pick a kernel function for that representation
3. Compute the matrix of kernel values between every pair of 

training examples
4. Feed the kernel matrix into your favorite SVM solver to obtain 

support vectors and weights
5. At test time: compute kernel values for your test example and 

each support vector, and combine them with the learned 
weights to get the value of the decision function

Slide credit: L. Lazebnik

Summary: SVMs for image classification



http://www.mathworks.com/help/stats/svmtrain.html

MATLAB SVM Example

http://www.vlfeat.org/overview/svm.html

http://www.mathworks.com/help/stats/svmtrain.html
http://www.vlfeat.org/overview/svm.html


• Unfortunately, there is no “definitive” multi-class 
SVM formulation

• In practice, we have to obtain a multi-class SVM 
by combining multiple two-class SVMs 

• One vs. others
• Training: learn an SVM for each class vs. the others
• Testing: apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes
• Testing: each learned SVM “votes” for a class to assign to the 

test example

Slide credit: L. Lazebnik

What about multi-class SVMs?



• Pros
• Many publicly available SVM packages (LibSVM, Liblinear,etc): 

http://www.kernel-machines.org/software
• Kernel-based framework is very powerful, flexible
• SVMs work very well in practice, even with very small training 

sample sizes 

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs
• Computation, memory 

– During training time, must compute matrix of kernel values for every 
pair of examples

– Learning can take a very long time for large-scale problems

SVMs: Pros and cons

http://www.kernel-machines.org/software


• How well does a learned model generalize from the 
data it was trained on to a new test set?

Training set (labels known) Test set (labels unknown)

Slide credit: L. Lazebnik

Generalization



Slide credit: D. Hoiem

Underfitting: model is too 
“simple” to represent all the 
relevant class characteristics samples

simple model

preferred model

Overfitting: model is too 
“complex” and fits irrelevant 
characteristics (noise) in the data

samples

complex model

preferred model

Overfitting vs Underfitting
“Everything should be made as simple as possible, but not simpler.”

Albert Einstein



Traditional Detector Training (Motorbike)

Positive Samples

Negative Samples

Positive HOGs

Negative HOGs

Motorbike Detector

[Dalal et al. CVPR’05]
[Felzenszwalb et al. CVPR’08]

Training Samples 

Feature Extraction 
(Histogram of  

Oriented Gradients)

HOG Features

    Linear SVM

Use Case: Linear SVMs over HoG



Linear SVMs 
over 

HoG features

[Dalal &Triggs’05],  
[Felzenszwalb’08] 
[Malisiewicz’11]

Exemplar SVM 

Training an SVM with a single positive and many negative samples

Use Case: Exemplar SVMs



Another Classifier: Randomized Decision Forests

Shotton et.al., Real-Time Human Pose Recognition in Parts from Single Depth Images, CVPR, 2011



Body Part Classification  
with Randomized Decision Forests

Shotton et.al., Real-Time Human Pose Recognition in Parts from Single Depth Images, CVPR, 2011



Another Classifier: Deep Learning

Next Lecture …


